CMSC 426 Principles of Computer Security

Wireless Hacking and Security

1

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Last Class We Covered

- Important info you need to know
 - Cookies
 - HTML
 - GET and POST
 - JavaScript
- Cross-Site Scripting
- SQL Injection

Any Questions from Last Time?

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Today's Topics

- 802.11 Standard
 - Basic information
 - Sessions and security
- Wireless Hacking

802.11 Standard

802.11 Standard

- Specification for how WLANs are implemented
 - Wireless Local Area Networks
- Provides the basis for Wi-Fi technology
- Standard put out by IEEE
 - 802 covers anything dealing with area networks (local or metro)
 - □ 11 is specifically for WLANs
 - Multiple amendments have been released, including a, b, g, and n

802.11 Frequencies and Channels

- 802.11 operates within the radio spectrum, specifically the industrial, scientific, and medical (ISM) radio bands
 - □ Can operate in 2.4-GHz or 5-GHz ISM bands

- Each spectrum is divided up into channels
 - □ 2.4-GHz is channels 1-14, which overlap slightly with their neighbors
 - Overlapping can cause interference, but 1, 6 and 11 are non-overlapping
 - □ 5-GHz is channels 36-165 (in the US) and they don't overlap

Wireless Access Point

- Hardware device that allows a Wi-Fi device to connect to a wired network
 - Connected directly to a WLAN, typically Ethernet
 - Access point provides wireless connections so that other devices may use the wired network
 - Multiple wireless devices can connect thru a single wired connection
- Networks with access points are referred to as *infrastructure*, while those that are peer-to-peer are called *ad hoc* We'll be focusing on infrastructure networks

Service Set Identifier

- Also known as SSID
- The network's "name," often set by the network admin
 UMBC has eduroam, UMBC Campus, and UMBC Visitor
- Possible to have two networks with the same SSID within the same broadcasting range
 - □ Some devices try to connect to the one with the stronger signal
 - □ Some devices try to connect to the first one they see

802.11 Sessions and Security

Establishing an 802.11 Session

- Before establishing a connection, client must identify if a wireless network is actually present
 - Sends out a probe request asking the network to identify itself
 - Uses SSID, and broadcasts on each channel it supports
 - □ If present, access point (AP) responds with a *probe response*
- Next, client sends out an *authentication request*
 - Separate from any security measures or encryption
 - Most APs are configured to accept any connection, and will only reject the connection when incorrectly encrypted data comes through

Establishing an 802.11 Session (Continued)

- Final step is an association request, sent by the client
 - Begins the record-keeping process of association
- AP sends out an *association response*
 - Indicates that the AP is keeping track of the wireless client
- At this point, client should be able to communicate with AP
 Depending on the level of security, may require further steps

802.11 Security Mechanisms

MAC filtering

 Some APs will deny a client connection if their MAC address does not match an address in a preconfigured list

- "Hidden" wireless networks
 - APs send out *beacon* announcements with info on connecting
 - Beacon may be configured so that SSID is omitted
 - Client cannot join the network without knowing the SSID
- Ignoring broadcast probe requests
 - Clients can discover nearby wireless network through a broadcast probe request, without knowing the SSID; simply ignore these

Security Protocols

WEP (Wired Equivalency Privacy)

- Uses RC4, a stream cipher
- 40-bit encryption key, 24-bit initialization vector
 - Really small size, makes it easy to crack!

WPA (Wi-Fi Protected Access)

- Interim standard released because WEP was so flawed
- □ Also uses RC4, but with a 256-bit key, and a 48-bit IV
- Adopted TKIP (Temporal Key Integrity Protocol) to increase security
 - Generates a new 128-bit key for each packet

Information from https://searchnetworking.techtarget.com/feature/Wireless-encryption-basics-Understanding-WEP-WPA-and-WPA2

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Security Protocols (Continued)

WPA2 (Wi-Fi Protected Access 2)

Current standard

- Uses AES-CCMP instead of TKIP
 - TKIP was designed to not have additional hardware requirements
 - AES: Advanced Encryption Standard
 - CCMP: <u>Counter Mode Cipher Block Chaining</u> <u>Message Authentication Code Protocol</u>
 - CCMP allows only authorized network users to receive data, and uses cipher block chaining MAC to ensure message integrity
 - □ WPA2 can also use TKIP as a fallback if CCMP isn't supported

Information from https://searchnetworking.techtarget.com/feature/Wireless-encryption-basics-Understanding-WEP-WPA-and-WPA2

Wireless Hacking

Wireless Hacking: aircrack-ng suite

- Software suite of tools to assess Wi-Fi network security
 - Contains WEP and WPA crackers
 - Allows monitoring and capture of transmitted packets
 - Can be used to perform attacks
 - Replay, de-authentication, fake access points, packet injection, etc.
- Available on the Kali Linux VM!

Information from https://en.wikipedia.org/wiki/Aircrack-ng and https://www.aircrack-ng.org/

Wireless Hacking: Sniffing Traffic

- Many networks are unencrypted at the 802.11 layer
 - Makes it trivially easy to "sniff" transmitted packets, listening in
 - Note: depending on local laws, this may be straight-up illegal
- Wireshark is a packet analysis tool for live or captured data
- Simplest defense is to enable an 802.11 layer encryption
 If that's not possible, higher level encryption can also be used

Wireless Hacking: De-Auth. Attacks

- Spoofs de-authentication frames from the client to the AP and vice versa to force a disconnect
 - May send multiple frames, as some clients try to reconnect immediately
- Can use the aireplay-ng tool (within aircrack-ng) to perform this
 Sends out 128 frames (64 to client, 64 to AP) for every deauth
- Difficult to thwart without going outside the 802.11 standards
 As a solution, some drivers will disconnect and quickly try to reconnect elsewhere when they see a de-auth frame, but this can be countered

Wireless Hacking: WEP Cracking

Good demonstration and explanation:

https://youtu.be/RydsjNhUjdg

Wireless Hacking: Wardriving

- Driving around, using a laptop or smartphone to search for Wi-Fi wireless networks
 - Can be used to map out the location of networks
 - Seattle was mapped by 100 undergrads in 2004, who found 5200 access points, including one called "Open to share, no porn please"
 - □ There's also warbiking and warcycling, but it's not as cool sounding
- Wardriving is technically legal, although when Google admitted to doing it with the StreetView vans, people weren't happy
 - It's okay they just use your Android mobile device to do it now

Information from https://en.wikipedia.org/wiki/Wardriving

Wireless Hacking: Wi-Fi Pineapples

https://youtu.be/l4f47q7fNZk

Image Sources

- Wireless access point:
 - https://en.wikipedia.org/wiki/File:Cisco_Aironet_1131AG_-_Close.jpg